Davor Runje i Hajdi Ćenan registriraju svoj drugi patent

Davor Runje i Hajdi Ćenan registriraju svoj drugi patent

Uvođenje objašnjivosti odnosno explainabilityja u neuronske mreže tema je drugog patenta koji je odlučio registrirati hrvatski AI startup airt.  

O njihovom prvom patentu za inovirane tehnike dubokog učenja za predviđanje ponašanja iz strukturiranih podataka kakvi se najčešće koriste u poslovnom svijetu, rep.hr je izvještavao u srpnju prošle godine.

O svom novom patentu Davor Runje iz airta prvo je pričao jučer na predavanju održanom u sklopu Data Science Croatia 2022. konferencije održane u City Plaza centru, a potom i na press konferenciji u društvu Hajdi Ćenan.

airt gradi platformu za izradu prediktivnih modela na strukturiranim podacima kakvi, primjerice, postoje u bankama ili kod pružatelja komunikacijskih usluga, i za obradu tih podataka interno su razvili vlastite tehnike dubokog učenja inspirirane metodologijama koja se koriste u obradi jezika (NLP). Iskustvo rada na konkretnim problemima iz financijskog sektora upotrijebili su kako bi izgradili potpuno automatiziranu platformu za pripremu transakcijskih podataka te automatiziranu izgradnju modela za konkretne poslovne probleme.



Međutim, jedan od poznatih problema dubokog učenja jest da ono radi na principu tzv. crne kutije, odnosno, ne zna se kako točno algoritmi dolaze do zaključaka i preporuka na temelju kojih se posljedično donose poslovne odluke. Drugim riječima, iako se zna koji parametri te kako bi pad ili rast tih parametara trebao utjecati na krajnji rezultat, u modelima dubokog učenja nema garancije da će se to zaista tako i dogoditi. 

“Ako su svi ostali parametri jednaki, veća kuća bi, primjerice, trebala imati veću vrijednost od manje ili bi banka klijentu ili klijentici s većim primanjima trebala odobriti veći kredit. No, danas ne postoje adekvatna rješenja koja osiguravaju da se modeli dubokog učenja pridržavaju tih svojstava tako da možemo garantirati da su odluke temeljene na tim modelima legitimne i da se možemo slijepo osloniti na njih, dapače. Iz tog razloga, iako su tehnike dubokog učenja po rezultatima superiorne mnogim drugim tehnikama, mnogi biznisi ih nisu spremni upotrijebiti i upogoniti jer ne mogu objasniti što je točno utjecalo na krajnji rezultat i zašto je moguće da rezultat bude drukčiji za dvije osobe potpuno istog profila”, rekla je Hajdi Ćenan.

U airtu su pronašli način kako unijeti objašnjivost u duboko učenje i osigurati konzistentnost rezultata bez gubitka efikasnosti i točnosti koje donosi korištenje neuronskih mreža.

“Intenzivno se bavimo istraživanjem i razvijamo vlastite pristupe i tehnike, uključujući i ovu, jer sve više tvrtki, osim točnosti modela, traži objašnjivost dubokog učenja. Uspjeli smo na jednostavan način riješiti problem koji u literaturi postoji već 30 godina, a koji osigurava monotonost modela dubokog učenja (kada, ovisno o ulaznom parametru, funkcija može ili samo rasti ili samo padati). Trenutna rješenja koja to pokušavaju osigurati izuzetno su kompleksna te zbog toga neefikasna; trenutna industrijska praksa upotreba je dubokih lattice mreža koje je razvio Google. Kada ih usporedimo s našim rješenjem, na standardnim testovima dobivamo veću točnost s barem 10 puta manje parametara, što izuzetno utječe i na ukupno korištenje računalnih resursa potrebnih za treniranje modela. Naš fokus na poslovne podatke rezultirao je nizom uvida i inovacija koje nisu primjenjive u do sada najrazvijenijim domenama dubokog učenja - vizualnim i jezičnim - ali su se pokazali ključnima u poslovnim primjenama. Poslovni modeli bitno su različiti od vizualnih i jezičnih, prije svega zbog dinamike kojom se mijenja situacija na tržištu, a manje zbog razlike između strukturiranih i nestrukturiranih podataka. Sve naše inovacije uzimaju vrijeme kao dimenziju podataka koja zahtijeva posebnu brigu i specijalizirana rješenja i to se pokazalo kao vrlo plodna linija istraživanja i razvoja”, rekao je Davor Runje. 

Ovaj patent inicijalno su prijavili u The US Patent and Trademark Office (USPTO), a zatim i EU te čekaju završetak procedure petentiranja, a planiraju inovirati i dalje. 

- - - IZDVOJITE MINUTU I PODRŽITE REP.HR - - -

Ako redovito posjećujete rep.hr, vjerojatno ste svjesni da objavljujemo niz članaka koji sadrže zanimljive i društveno korisne informacije. Nastojimo ukazati na nepravilnosti i prevare, promovirati uspjehe informatičara na natjecanjima, predstaviti nove projekte i inicijative i pružiti niz drugih informacija. Iako portal ima određene marketinško-prodajne aktivnosti, proizvodnja takvog sadržaja košta i - kao i drugim medijima - dodatni izvor prihoda pomogao bi u daljnjem rastu i razvoju. Brojni portali uveli su proteklih mjeseci zaključavanje članaka i pretplatu, a mi smo se odlučili za opciju dobrovoljnih priloga za koje se izdaju računi.

Podržati nas možete već s pet kuna, na što trebate potrošiti manje od minute. Dovoljno je izabrati sličicu s jednim od ponuđenih iznosa, a nakon toga u novom prozoru izabrati način plaćanja. Radi jednostavnosti i brzine plaćanja, podržane su mobilne aplikacije KEKS Pay, Aircash i Settle te kriptovalute. Uplata se realizira putem partnerske tvrtke Neoinfo i sustava mobilepaymentsgateway.com Sustav za plaćanja je trenutnu u testnoj fazi te se ispričavamo ako u početku bude nekih nesavršenosti. Ako uočite nekakav nedostatak ili vas zanima više informacija o sustavu možete nas kontaktirati na info@rep.hr

Izaberite iznos podrške: